
LUD- A2422S9

SI Natonal DWense UV 1
Defence nationals

DEVELOPMENT ENVIRONMENT FOR DIINS
(Dual Inertial Integrated Navigation System)

by

J.C. McMillan and R. Ramotaur

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
TECHNICAL NOTE 91-5

Canad9 91-1:570A

I41 National Mies
Defence natlonaie , *

. It ;-so¢ .J

DEVELOPMENT ENVIRONMENT FOR DIINS
(Dual Inertial Integrated Navigation System)

by

J.C. MWI and K Ramotaur
Navigation and Integrated Systems Section

Electronics Division

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
TECHNICAL NOTE 91-5

PCN April 1991
041 U Ottawa

ABSTRACT
With a view to satisfying the navigational requirements of TRUMP, CPF and future

submarines, DREO initiated an investigation into the possible extension of MINS (Marine
Integrated Navigation System) to accommodate the two inertial navigation systems which each
of these platforms were expected to have, in addition to the various navigation sensors that MINS
already integrates (GPS, Transit, Loran-C, Omega, Speedlog and Gyrocompass). It soon became
clear that the ideal solution would be a new system with a different architecture than MINS.
The new concept was called DIINS (Dual Inertial Integrated Navigation System). A study was
therefore initiated to determine the most appropriate hardware and software to be used in the
design and development of DIINS. This report contains a brief description of the recommended
hardware and software solution, as well as the rationale for their selection.

RESUME
Dans le but de satisfaire les besoins de navigation de TRUMP, de CPF et de futurs sous-

marins, DREO a entrepis une enquete sur une extension possible de MINS (syst~me inttgrd
de navigation de la Marine). Cette extension aurait pour but d'accomoder les deux systhmes
de navigation par inertie qui devaient faire pirtie de chacun des projets ci-dessus, en plus des
diff6rent dEtecteurs de navigation que MINS englobe d~ji (GPS, Transit, Loran-C, Omega,
Speedlog et Gyrcompass). I1 est vite devenu 6vident que la solution idEale consisterait en un
nouveau syst~me avec une architecture diff~rente de MINS. Le nouveau concept fut appell
DIINS (double syst~me intdgr6 de navigation par inertie). Une 6tude a donc 6td entreprise pour
determiner le materiel et le logiciel les plus appropries pour 6tre utilisds dans la conception et le
dEveloppement de DIINS. Ce rapport contient une brbve description de la solution recommendde
pour le materiel et le logiciel, ainsi qu'une analyse raisonnde de leur stlection.

iW

EXECUTIVE SUMMARY
With a view to satisfying the navigational requirements of TRUMP, CPF and future

submarines, DREO initiated an investigation into the possible extension of MINS (Marine
Integrated Navigation System, described in reference [1]) to accommodate the two inertial
navigation systems which each of these platforms were expected to have, in addition to
the various navigation sensors that MINS already integrates (GPS, Transit, Loran-C, Omega,
Speedlog and Gyrocompass). It soon became clear that the ideal solution would be a new
system with a different architecture than MINS. The new concept was called DIINS (Dual
Inertial Integrated Navigation System).

In September 1988, DREO initiated a study to determine the hardware and software
appropriate to the needs of the DIINS application. This report, contains a brief description
of the recommended hardware/software solution, as well as the rationale for the decision.

After a detailed study of the requirements and careful analysis of the alternative options
and systems the conclusions were the following:

1. The Ada Programming Language is the most suitable implementation language,
2. The Telesoft Ada compiler is the best production quality compiler on the market,
3. A suitable real-time executive must be acquired to enhance the real-time capabilities of the

Ada runtime system. It must be appropriate to the needs of the target configuration,
4. The Sun 3/60 (Sun 3/80) workstations provide the most appropriate price/performance

capabihties as a host system,
5. The Motorola 680x0 family of microprocessors are the most suitable target, and
6. The VME bus architecture is a suitable bus architecture, based on its popularity, compatibility

and performance.

It is therefore recommended that DREO acquire:

• three Sun 3/60 (Sun 3/80) workstations (including 800 megabyte hard disk, Sun O/S and
accessories) and

" RTAda Comprehensive Development System.

TABLE OF CONTENTS

ABSTRACT...ii
EXECUTIVE SUMMARY.. v
1 INTRODUCTION.. 1

1. 1 Objective.. 1
1.2 Background. .1
1.3 Summary Recommendations................................. 2

2 SOFTWARE REQUIREMENTS.................................. 5
2.1 Large Embedded System................................... 5
2.2 High-Level Language...................................... 5
2.3 Fault-Tolerant... 5
2.4 Rate of Input... 5
2.5 Processing Time... 5
2.6 Support for Concurrency.................................... 6
2.7 Support for Data Abstraction................................. 6
2.8 Support for Real-lime..................................... 6

3 COMPARISON OF PROGRAMMING LANGUAGES 7
3.1 Large Embedded System................................... 7
3.1.1 Maintenance.. 7
3.1.2 System Decomposition................................... 8

3.2 Fault-Tolerant... 3
3.3 Support for Concurrency.................................... 9
3.4 Support for Data Abstraction.............................. ... 9
3.5 Support for Real-ime................................ 9
3.6 Programmer Availability............................ 9

4 PROGRAMMING SUPPORT ENVIRONMENT....................... 10
4.1 Compiler... 10
4.2 Global Optimizer.......................... 13
4.3 Library Manager.. 13
4.4 Source Level Debugger.................. 13
4.5 Host Profiler... 13
4.6 Downloader and Receiver.................................. 14

vii

5 HOST SYSTEMS .. 15
5.1 C osts 15
5.2 Performance .. 15
5.3 Compatibility with Target 15
5.4 User Friendly .. 16
5.5 V M E 16

6 TARGET SYSTEMS .. 17
6.1 Microprocessors 17
6.1.1 iAPX80386 ... 17
6.1.2 iAPX80960 ... 17
6.1.3 TMS320 ... 18
6.1.4 MC68OX0 .. 18

6.2 Real-Time Executives 18
6.2.1 Problems of Ada Runtime System 18
6.2.2 Ada Real-Time Executive (ARTX) 20

6.3 Bus Architectures 21
6.3.1 Synchronous Versus Asynchronous 22
6.3.2 Data/Address Bus 22
6.3.3 Arbitration Scheme 22

6.3.4 Interrupt Handling 23
6.3.5 Processor Independence 23

6.3.6 Multiple Vendors 23
7 RESULTS .. 24
REFERENCES ... 25

viii

1 INTRODUCTION

1.1 Objective
With a view to satisfying the navigational requirements of TRUMP, CPF and future

submarines, DREO initiated an investigation into the possible extension of MINS (Marine
Integrated Navigation System, described in reference [1]) to accommodate the two inertial
navigation systems which each of these platforms were expected to have, in addition to
the various navigation sensors that MINS already integrates (GPS, Transit, Loran-C, Omega,
Speedlog and Gyrocompass). It soon became clear that the ideal solution would be a new
system with a different architecture than MINS. The new concept was called DIINS (Dual
Inertial Integrated Navigation System).

Since the DIINS software was expected to be significantly larger and more complex than
the MINS software, and several people were expected to work in parallel on different aspects of
DIINS, it was suspected that a different programming language and a new software development
environment would be required. Therefore the Defence Research Establishment Ottawa initiated
a study to determine the hardware and software appropriate to the needs of the DIINS application.
This report provides a brief description of the scale of the DUNS project from a software point
of view. It contains a brief description of the recommended hardware/software development
environment, as well as the rationale for the recommendation. It also describes the software
development environment which was eventually acquired for DIINS work.

1.2 Background
As described in reference [1] the MINS software consists of 27 tasks with a total of about

25,000 lines of code and is written in the C language. This software was largely developed
on a VAX 11/780 computer in the early to mid 1980's. The MINS production model uses a
Motorola 68020/68881 processor running at 10 MHz and is essentially running at capacity with
the MINS software.

The processing burden for DIINS was expected to be significantly greater than for MINS
for the following reason. The processing burden for MINS was to a large extent dominated
by the covariance propagation subroutine in the Kalman filter of the "Navigation/Filter" task
(see reference [1]), especially before the introduction of the more efficient Bierman-Agee-Turner
covariance propagation method. The computational burden imposed by covariance propagation
is determined by the dimension of the state vector and the propagation rate. Generally
the computation requirement for covariance propagation increases as the square of the state
dimension and increases linearly with the frequency of propagation. The production model of
MINS employs a 17 state Kalman filter, for which the covariance matrix is propagated every
20 seconds. Preliminary design options for DIINS suggest that several (up to five) filters with
between 12 and 30 states each, will be required to run in parallel, at a frequency of at least
every 10 seconds (preferably every second). Thus there will be at least an order of magnitude

I

increase in the computational burden in DnNS as compared to MINS, and perhaps two orders
of magnitude.

The MINS production model uses a Motorola 68020/68881 processor running at 10 MHz
and is essentially running at capacity with the MINS software. In fact a better comparison
can be made with the preproduction model of MINS, which did not employ the more efficient
Bierman-Agee-Turner routine, since this method cannot be used in DIINS (because it requires
certain Kalman filter design matrices to have an especially simple form which is not the case
with DUNS). The preproduction MINS, with the same 68020/68881 processor running at 10
MHz, was running at capacity with only 15 states and a 30 second propagation rate.

Thus five 20 state filters running at one Hz requires 5 x (20/15)2 x 30 = 267
times more computational capacity than one 15 state filter running at 1/30 Hz using the
same algorithm. A more realistic projection of DIINS computational requirement would
be four filters with 12, 14, 15 and 18 states respectively, running at different rates of
from one to ten seconds. The increased burden in comparison to MINS then becomes:
(12/15) 2x30+(14/15) 2x30+(15/15) 2 x3+(18/15) 2 x3 = 19.2+26.1+3+4.3 = 52.6
This will likely be quite manageable by available processors by the time the DIINS design and
simulation analysis phase is completed.

The increased complexity of DIINS, in comparison to MINS, is due in part to the fact that
these different filters must be coordinated to share the same measurements and FDIR (Failure
Detection Isolation and Reconfiguration) information. The FDIR itself is much more complicated,
with the abundance of potentially conflicting filter residual test information plus a new type of
failure detection test (the chi-squared test). The DIINS inertial error model is also much more
complex than the corresponding MINS DR (fdead reckoning) model. The fact that DIUNS has
two central "systems" in the INS's rather than the single DR "system" in MINS introduces an
additional level of reconfiguration.

The potential for DINS to eventually be modified to meet the future submarine requirement
also calls for an increased attention to the issue of software reliability.

1.3 Summary Recommendations
After a detailed study of the requirements and careful analysis of the alternative options

and systems the conclusions were the following:

1. The Ada Programming Language is the most suitable implementation language for the DUNS
application,

2. The Telesoft Ada compiler is the best production quality compiler on the market,
3. A suitable real-time executive must be acquired to enhance the real-time capabilities of the

Ada runtime system. It must be appropriate to the needs of the target configuration,
4. The Sun 3/60 (Sun 3/80) workstations provide the best price/performance capabilities as a

host system for the DIINS application,
5. The Motorola 680X0 family of microprocessors are the most suitable target processors for

the DUNS application, and

2

6. The VME bus architecture is a suitable bus architecture for the DIINS system based on its

popularity, compatibility and performance.

It is therefore recommended that the Defence Research Establishment Ottawa acquire:

" three Sun 3/60 (Sun 3/80) workstations (including 800 megabyte hard disk, Sun 0/S and
accessories)

and

" RTAda Comprehensive Development System

One of the overriding considerations that swayed the decision in favour of the Sun 3/60
over the alternatives such as the Microvax II was cost. The Microvax 11 option would cost
$80,000 which represented a sum of $20,000 more than the Sun 3/60 option. Another advantage
that the Sun 3/60 workstation afforded over the Microvax II was in the area of performance.
The Sun 3/60 was 2-3 times faster than the Microvax II for a fraction of the cost. Moreover,
while the performance of the Microvax II would degrade as the number of users increased, the
Sun 3/60 offered the option of enhancing overall processing power through the acquisition of
additional workstations.

The Sun 3/60 option also offered advantages in the area of compatibility since, unlike
the Microvax II, it is object code compatible with the target computer. Subsequent acquisition
of a Sun 3/470 brings with it VME compatibility and hence a host of options and VME-based
products for the target computer. The bus used with the Microvax II is the Q-bus which offers
less possibilities than the VME including speed.

The choice of the ARTX package must carefully be examined and understood. It may
seem at first glance to be a premature decision. After all ARTX presupposes that the target
configuration is single processor. Despite this, its purchase was recommended based on the
following considerations:

1. The cost of the host compiler from Telesoft would be the same as the cost of the host
compiler and ARTX ,vhen obtained from Ready Systems. In short the acquisition of ARTX
posed no additional cost but would result in potential savings.

2. If the decision were made to use multiple processors, the ARTX must be used together with
another package called MPV,

3. ARTX (VRTX) was the only real-time executive that was integrated at the time with the
Telesoft Compiler,

4. ARTX enhances the real-time capabilities of Ada runtime system with its deterministic
approach to multitasking, and

5. ARTX was used in over 3000 real-time projects including PLANS and MINS, two successful
projects completed by DREO. It is the most popular executive, controlling 75% of the market
share.

Changing technology brings with it better products which could affect some of the decisions
made during this study. Two of the areas of concern are the choice of the target processor and
the choice of the real-time executive.

3

The Ada Software Engineering Institute has recommended that processors such as 68020
and 80386 with their complex addressing modes, large linear address space and 32-bit architecture
are at present most suitable for use as target processors in an Ada application. This decision
was only based on the optimization and maturity of compilers for these processors.

RISC technology promises more processing power than that currently attainable using
CISC technology (Complex Instruction Set Computers, e.g. 68020, 80386 etc.). The Telesoft
Corporation has taken more than four years to optimize its compilers to CISC based processors
such as members of the 680x0 family.

A decision in the near future to use RISC processors should be based on the maturity of
the compilers, not on MIPS, since an immature compiler can produce inefficient code structures
and slower performance. The compiler may not take advantage of the RISC architecture.

While special purpose Digital Signal Processors such as TMS320 promise more speed and
conformance to the architecture of the DIINS system than the 68020, it is not likely that Ada
compilers would ever be targeted to them because it is not viable economically.

Since the conclusion of the study several companies have integrated their real-time
executives with the Telegen 2 system, including MTOS (for multiprocessing) and pSOS. Since
pSOS will be supported by Telesoft, the only advantage in replacing ARTX with pSOS is that
support will be provided by Telesoft alone. There is little to gain by a ffip-flop in this direction.

Also since the time of writing the MTOS a real-time executive, which is reputed to be
better for multiprocessing, has been integrated with the Telegen 2 ADA compiler. While no
comments as to the validity of these claims can be made this remains a non-issue until the
DIINS simulations dictate whether the target processor is single processor or multiprocessor.

4

2 SOFTWARE REQUIREMENTS
The DIINS (Dual Inertial Integrated Navigation System) is a real-time, multi-sensor,

optimally integrated navigation system that is currently being designed and developed by Defence
Research Establishment Ottawa. It is expected to require the development of a fairly large
(>20,000 lines) multi-task software package, to perform the real-time sensor data fusion from
the six or seven different navigation sensors being integrated.

2.1 Large Embedded System
The system is characteristic of a real-time embedded system in that it is large and will be

long-lived and will continually undergo change. It is therefore essential that the implementation
language of choice support team development and be maintainable, understandable, efficient and
reliable.

2.2 High-Level Language
Furthermore the DIINS system should be implemented in a high-level language rather

than assembly language for ease of maintenance, productivity concerns and the availabilit" of
programming personnel for high-level languages.

2.3 Fault-Tolerant
A major requirement of the DIINS system is its ability to detect, isolate and recover from

sensor failures. This suggests that the implementation language should have an exception han-
dling mechanism which allows the development of fault-tolerant systems. The implementation
language should also facilitate the dynamic reconfiguration of software based on the detection
of impending failures. It is important that the programming language have mechanisms which
would allow the reconfiguration to incur minimal or no overhead during runtime.

2.4 Rate of Input
The system should facilitate data input from the sensors at rates of 1 to 10 Hz. The system

should account for data that is not provided within an allotted time.

2.5 Processing Time
The sensor data should be processed by the prefilter and Kalman filter tasks at an update

time of < 10 seconds (preferably about one second). As explained in section 1.2 above, this
will likely require at least an order of magnitude more processing power than say a 68020/68881
running at 10 MHz.

5

2.6 Support for Concurrency
Within the DIINS system there will be three to five parallel threads of control, each

representing a separate prefilter/filter task. Because of the parallel nature of the system, support
for concurrency is vital both from an organizational and implementation point of view. This
would ensure separate tasks are apportioned the responsibility for sensor input and computation
and the capability exists for these activities to overlap.

2.7 Support for Data Abstraction
To reduce code size, maintenance and the programming effort for the DINS system, it

is important that the implementation language facilitate the definition of reusable code and data
templates. These templates may be shared by the various parallel prefilter/filter tasks resulting
in decreased programming effort, an elegant design and reduced maintenance costs.

2.8 Support for Real-Time
Due to the real-time nature of the system, support for interrupts, priority based scheduling

of the prefilter, data collection and filter tasks as well as support for time (delays, time outs)
is crucial.

The cyclical nature of the DIINS system also dictates support for time-slicing amongst the
various tasks of the DIINS system, forcing a predefined order of execution. It is also required that
the software support explicit tasking control to allow resumption, suspension or rescheduling of
tasks within the DIINS system.

6

3 COMPARISON OF PROGRAMMING LANGUAGES

In this section we shall compare the Ada and the C languages based on the general software
requirements of the DIINS system. This is not a comparison of the features of the two languages
but rather a comparison to decide which language is more suitable as the implementation language
for the DIINS system.

3.1 Large Embedded System
Most software engineering methodologies share a common view of the requirement for

projects that involve seve ral people and long times. It must be possible to:

1. Decompose the project into subtasks which can be developed independently,
2. Assemble the resultant components into an operational system, and
3. Manage the long-term maintenance and enhancement of the project.

While a tool such as a programming language cannot cope with all of these problems there
are some aspects of a language that can significantly impact these issues.

In this section we shall compare the Ada and C programming languages in terms of their
support for programming in the large - maintenance and decomposition.

3.1.1 Maintenance
The DIINS system is a research project that will be designed and redesigned many times

before the system is completed.

One of the most important characteristics of a maintainable system is understandability.
The person who is responsible for maintaining a system is usually not one of the original authors
and even if so, the interactions are usually subtle, complex and easily forgotten.

One of the first problems of maintenance is to re-understand the existing code and quickly
understand the implications of a change well enough to make the necessary changes. While
one of the aspects of this for large systems is the ability to easily locate relevant information,
there is also a counterbalancing need to hide information since human beings can only deal with
small amounts of detail at one time.

It can be stated that readability is inversely proportional to compacmess. While the C
language is very compact and powerful it does so at the expense of readability. Many C
programmers will argue that it is possible to write readable C programs. However expressions
such as: Char(**Xo)[]; in C require a syntactician to discover their meaning. Moreover, since
there is also a tendency to write the best possible code in a given language, this naturally works
against writing readable code in C. C gains its efficiency from effective use of pointers, side
effects, auto-increment and auto-decrement to produce code that is difficult to understand much
less change. This results in significant effort and costs during the maintenance phase of the
project.

The C programming language shows very limited support for information hiding, one of
the effective weapons in designing maintainable systems. Consequently changes are much more
difficult to localize and contain, resulting in larger maintenance costs.

The Ada programming language has much more readable syntax than C. It is much easier
to locate relevant information, which is one of the aspects of maintaining a large system. At
the same time Ada supports information hiding which confines the impact of a change from
propagating to surrounding modules. Changes made to a data structure (if it is deemed private)
in an Ada program may only require a recompilation of the program. This greatly simplifies the
maintenance effort and significantly reduces costs.

3.1.2 System Decomposition

The Ada programming language supports the development of large systems by several
people. It allows a system to be decomposed along natural lines in one of several dimensions

functional and data oriented.

Whatever the nature of the decomposition it is important that the resulting pieces should
correspond to work assignments. In other words, each of the portions of the original project
should be performed by an individual in isolation.

The Ada programming language accomplishes this by enabling various subsystems such as
data collection tasks and prefilter tasks to be operated on by individual project team members. Its
support for separate compilation ensures that there is consistency across compilation boundaries.
In short it ensures that there is consistency in the work done by individual team members, while
at the same time affording them the independence of working in isolation. C on the other hand
only supports independent compilation. While modules can be physically compiled separately,
there is no type checking across the compilation boundaries. This makes it much more difficult
to perform system decomposition and to assemble the pieces into an operational system, since
there is not nearly the same level of checking as that afforded by Ada.

C does not support data abstraction and hence a system can only be decomposed using
functional decomposition. With its use of abstractions, Ada allows common data structures for
the prefilter tasks to be factored out thereby making system decomposition much easier and
reduces the programming effort.

3.2 Fault-Tolerant

The Ada programming language also aids in the production of fault-tolerant software by
providing an exception handling mechanism. In languages such as C a user must test for the
occurrence of an error and direct the control flow to an error routine where the error is handled.
Since it is impossible to decide beforehand all the things that can go wrong in a program it is
very difficult to develop a fault-tolerant system using C.

Moreover, the C programming language does a lot to discourage the development of fault-
tolerant systems. It does not ensure that array bounds are not exceeded, that values passed to a

8

subroutine agree in type or that garbage is not returned in a function call. While these errors are
easy to locate in a small system, they become exaggerated as the size of the project increases.

Within Ada the error seeks the error routine. No explicit control is required to direct traffic
of errors to particular error routines. Ada accomplishes this by latching into the interrupt handling
mechanism of the language. The exception handling mechanism can be easily tailored using Ada
to meet the needs of the application thereby enabling the realization of fault-tolerant systems.

3.3 Support for Concurrency
The Ada programming language has built-in support for multitasking. Using tasks and

the rendezvous a programmer can easily create a variety of multitasking primitives such as
semaphores, event flags and message queries. Inter-task communication is achieved via the
rendezvous mechanism and by shared variable support.

The C programming language does not directly support multitasking. It considers
multitasking to be in the domain of the operating system. However its low level approach
to things is such that suitable primitives could easily be written.

3.4 Support for Data Abstraction
The C programming language shows no support for data abstraction. It does not allow

for definition of reusable code and data templates (generics). This results in an increase in
the programming effort and an increase in the maintenance effort since there is more code to
maintain. Ada easily allows the definition of reusable code and data templates. This reduces the
programming effort and results in a system that is more elegant and maintainable.

3.5 Support for Real-Time
The Ada programming language has limited support for real-time applications while the

C programming language provides almost no support. While Ada supports a priority based
scheduling scheme, interrupt handling and coding of time sensitive logic involving delays or
time-outs, it has many limitations in the domain of hard real-time applications. It lacks support
for time-slicing and explicit tasking control. However all of these problems can be solved using
an appropriate Real-time executive which would extend the capabilities of the Ada runtime
system. This is the approach employed by the C programming language anyway which achieves
real-time capabilities through calls to the operating system.

3.6 Programmer Availability
Programmers skilled in the ADA language are still far fewer than those skilled in the

C language. However the DIINS development project size and schedule are such that only
a few such programmers will be required, and adequate numbers of ADA programmers have
been identified as available. This programmer availability situation is also expected to improve
with time.

9

4 PROGRAMMING SUPPORT ENVIRONMENT

Development of real-time embedded systems differs from other software development in
that it requires the use of two computers rather than one; the host system on which the application
is developed and the embedded computer, which is referred to as the target. The target computer
has limited functions and limited memory. Therefore it is necessary to provide an integrated
development environment of tools and utilities common to both host and target. This integrated
development environment is termed the Programming Support Environment.

The selection of an appropriate Programming Support Environment ensures compatibility
between host and target systems and reduced development time. To facilitate development on
the host systems the following tools would be required on the host:

1. Validated Ada compiler,
2. Pretty printer,
3. Library manager,
4. Host performance profiler,
5. Source level debugger,
6. Make tool, and
7. Global optimizer.

These tools are often supplied along with the compiler.

4.1 Compiler

At present there are over 145 base and 58 derived compilers making the choice of an
Ada compiler non-trivial. All compilers are validated. However validation does not mean that
the compilers are:

1. Efficient:

a. fast object code,
b. small object code,
c. small compiler size, and
d. fast compilation speed.

2. Adequately supported by the vendor, or
3. Tested on real (or similar) projects.

Since the majority of Ada compilers have focused on validation rather than real-time
implementation, only a mere handful of present compilers fulfill the requirements of the DIINS
system. The host and cross compiler also must be compatible with each other . The target
processor must also be one of the more popular processors such as 68020 or 80386.

After a detailed evaluation, the list of eligible Ada compilers was reduced to the Verdix
Ada Development System (VADS) and Telegen 2, whose real-time implementations could be

10

targeted to either the Intel 80386 or the Motorola 68020. Both of these compilers produce fast
efficient object code as exemplified by their usage in many real-time projects.

The VADS system from Verdix has a more user friendly environment for the host system
and includes a debugger which is superior functionally to that of Telegen 2. However, the
Telesoft compiler (Telegen II) showed 10% faster execution speed and slightly more efficient
object code. Figures 1 and 2 show the significant improvements made by Telesoft in terms of
execution speed and efficiency over several versions of their compiler.

.-- TeleGen2 1750A450o-0 -* Code Size

4000 Wor of RAM

3500

3000

2500

2000 - 3.4

1500 0i8

Figure 1 Telegen2 Code Size

11

*.,a. TeleGen2 DhryStone
900- Execution on MC68020
ain Microsacondra

700

600

500

40

300 -- :
200 -

05-86 05-87 11-87 Spring a

Figure 2 Telegen2 Execution Speed on a Motorola 68020

The runtime system is also significant in the choice of a compiler for real-time applications.
The runtime system of both the Telesoft and Verdix compilers is inappropriate to the needs of a
real-time system. For example performance degrades as the number of tasks increases.

This situation can also be alleviated by choosing an appropriate runtime executive, which
enhances the real-time capabilities of the Ada runtime system. The Telesoft compiler can be
successfully integrated with a majority of the runtime executives on the market currently utilized
in hard real-time applications. The list includes ARTX (one of the more popular executives),
MTOS (for multiprocessing) and pSOS. Although the Verdix corporation is in the process of
negotiating these alliances, the realization is several months away.

12

Finally, a study conducted for NATO at John Hopkins University, has shown that the
Telesoft Compiler in most appropriate in the navigation applications. As a result, the Telegen
2 system was chosen for the DIINS application.

4.2 Global Optimizer
The global optimizer, a necessary component of the compiler, is required to make compiled

programs more efficient. In the majority of cases the code is both smaller and faster than when
compiled without the optimizer.

The global optimizer supplied with Telegen 2 performs a variety of optimizations such
as the "inlining" of subroutines thereby saving the overhead of procedure calls and removing
code that is not called.

4.3 Library Manager
Tools are required in order to maintain control over the DIINS program library. These

enable manipulation of programs in the library, facilitate copying of programs between
sublibraries, and allow version control and compression of dead code. This improves productivity
since the programmer does not have to create utilities or remember operating system commands
to accomplish these functions.

4.4 Source Level Debugger
The Programming Support Environment should contain a symbolic debugger which enables

programmers to establish an interactive debugging session by working the application from the
debugger. The debugger should have capabilities such as:

1. Setting of breakpoints,
2. Display of variable names,
3. Display of task status information,
4. Trapping of unhandled exceptions,
5. Log files which contain user requests and debugger responses for later program analysis, and
6. Machine level access to enable the experienced programer to examine the actual contents

of device systems.

The Telegen 2 supplies a source level debugger which accomplishes these functions.

4.5 Host Profiler
Perhaps the most useful tool in a Programming Support Environment for a real-time

application is a profiler. It is said that the performance of a large system is often dictated by
small portions of it. Profilers are required in order to improve efficiency and monitor execution
of the DIINS system host and target. These profilers pinpoint possible inefficiency in a compiled
Ada application and illustrate where program alteration might improve performance. A host
profiler is supplied as part of the Telegen 2 system.

13

4.6 Downloader and Receiver
In an embedded system there is always the need to have a tool to download executable

format load modules to the target processor and to upload the contents to the host system from
the target computer. A Downloader and Receiver is part of the Telegen 2 configuration. This
facilitates the downloading of Motorola 68020 S-Records to the target computer.

14

5 HOST SYSTEMS

After selecting the Telegen 2 Development System the consultants embarked on a study
to select an appropriate host system on which the DIINS application could be developed. At
the time of the study, the only possible choices for a host system for the Telesoft Ada compiler
were the Vax family of computers and the Sun family of workstations. Due to the prohibitive
cost of the high end members of the Vax family the choice was limited to the Microvax II or
the Sun 3/60 family of workstations.

5.1 Costs

The cost of the Microvax II hardware alone was almost equal to that of the entire system,
both hardware and software, of the Sun 3/60 option. Moreover, due to its multi-user license the
cost of all software components on the Microvax H were much higher than that for the Sun 3/60.
While it is true that the cost of the software license for the Sun 3/60 increases with the number
of users, options such as remote login capability pushed the decision in favour of the Sun 3/60.

If the Microvax II option were selected, it would require a one-time expenditure in excess
of $80,000 for both hardware and software. For the same cash outlay, the equivalent of three
workstations together with software could be acquired. Each workstation has 2-3 times the
processing capability of the Microvax II. If the cost for the total number of Sun 3/60 workstations
was too high, then one or two could be secured initially, thereby satisfying the budget constraints.

5.2 Performance

The Sun 3/60 family of workstations has two to three times the speed of a Microvax I.
The performance of the Microvax II degrades as the number of users increases. Usually this
saturates the processing power of the machine and results in very poor response times and poor
productivity. If the Sun 3/60 were chosen as the host, additional workstations could be acquired
as the project team enlarged, resulting in greater productivity. Also with the acquisition of more
workstations, DREO could be assured that the computer becomes more powerful rather than less
powerful as in the case of Microvax 11.

5.3 Compatibility with Target

The Sun 3/60 workstation is 68020 based which makes it compatible with the Motorola
family of processors. With the host 68020 based and the target 68020 based, potential for
translation or compatibility problems are eliminated, a definite advantage over the non-68020
based Microvax II. Incompatibilities occur between the host and cross compiler in the Microvax
II system because information is stored on the host in the opposite order to that of the 68020
(big endian versus little endian).

15

5.4 User Friendly
The Sun 3/60 uses windowing software which enables several tasks to be operated

concurrently. It allows a user to view several Ada files at the same time. This is extremely
useful in an environment, such as DIINS, where a programmer uses components from several
libraries and may need to work with them at the same time. The programmer could also be
editing another task in another window resulting in greater programmer productivity.

5.5 VME
The Sun 3/60 does not have a VME backplane. Therefore DREO could subsequently

acquire a Sun 3/470 workstation which has a VME backplane. The VME is an industry standard.
However the Microvax II is not compatible with VME. It uses its own Dec-based bus called
Q-bus which is also much slower than the VME.

16

6 TARGET SYSTEMS

6.1 Microprocessors

In this section we shall compare the suitability of a variety of microprocessors as possible
candidates for the target computer. This is not a technical comparison of the capabilities of the
microprocessor but rather a comparison in the context of the DIUNS application.

6.1.1 iAPX80386
The Intel 80386 processor complemented by its use of the 80387 floating point processor

is a very suitable processor for the DIINS application.

It is characterized by a large linear address space (4 gigabyte segment), and complex
addressing modes which map well into the high-level capabilities of Ada.

In addition, a concurrent Ada application causes many context switches when switching
from one task to the next. This results in large delays since the processor must save all the
registers and task states before switching to another task. The 80386 does this in hardware with
a single instruction making it a good choice for an Ada application.

However much more than the microprocessor architecture must be taken into account
before choosing a target microprocessor. One of these considerations is how mature is the
Ada compiler and does it take advantage of the capabilities of the microprocessor. Another
consideration is the mapping of the architecture of the application onto the capabilities of the
microprocessor.

Intel has long kept away from Ada. It was only in 1989 that it negotiated an agreement
with Telesoft to target the compiler to its processors. Over 90% of the Ada compilers are targeted
to the Motorola processors. Over the past four years Telesoft and other companies have spent
considerable effort to optimize their compilers to the Motorola microprocessors. As a result of
Intel being four years late, the race may be lost.

6.1.2 iAPX80960
The Intel 80960 is a new chip which offers as much as 66 MIPS. It uses a combination of

RISC and CISC technology. Unlike the traditional CISC microprocessors the iAPX80960 does
not require a floating point processor since it has these capabilities built in. Like the 80386, it
has a large address space, complex addressing modes and fast context switching time. The 80960
processor comes in 3 architectures - core, numerics and protected which are supersets of the
preceding architecture. The numerics architecture is used in computation-intensive applications,
while the protected architecture is used in CAD/CAM and robotics applications.

At present Tartan Laboratories, a company in Pennsylvania, has targeted its compiler to
the 80960 with good results. However, the microprocessor is too new to allow the compiler
developers to take advantage of its capabilities.

17

6.1.3 TMS320
Special purpose Digital Signal Processors such as the TMS320 are very suitable for the

Kalman filtering phase of the DIINS application. Its ability to multiply vectors by matrices
with great speed (60 nanoseconds) would definitely be very useful for the DIINS application.
It employs a great deal of parallelism in its ability to perform calculations in parallel as well
as parallelism in its internal bus architecture. However it is unlikely that an Ada compiler will
ever be developed for the TMS320. Its specialization and limited usage pose considerable risk
to any company wishing to develop an Ada compiler targeted to it.

6.1.4 MC680X0
The Motorola family of microprocessors is currently the most ideal microprocessor for

the DUNS application. While it is not technically superior to the TMS320 or iAPX80386, other
considerations motivate this decision.

During the phases of compiler development, compiler companies focus on several phases
or activities in optimizing a compiler for a particular microprocessor. Thus far Telesoft has
succeeded in optimizing its code generation to the Motorola 680X0 family. Its compiler takes
advantage of the newer instructions introduced within the Motorola 68020 family such as the
newer bit manipulation instructions, and the long word multiply and divide. The next phase
of the development of the Telesoft compiler will see a much more deterministic approach to
multitasking thereby reducing the responsibilities of the real-time executives. The Motorola
680x0 family has a large linear address space, complex addressing and 32-bit architecture.

It was deemed one of the most suitable target processors by the Ada Software Engineering
Institute. The RISC microprocessors such as Motorola 88000 are several years behind the
680x0 in terms of Ada compiler maturity.

Finally, the great number of vendors currently developing VME based products motivate
the decision - the 680X0 family of microprocessors is most suitable target processor for the
DIINS application.

With the announcement of the arrival of the Motorola 68040 further study is required in
this area.

6.2 Real-Time Executives

6.2.1 Problems of Ada Runtime System
The Ada programming language has a built-in support for real-time and concurrent

applications. Its support for concurrency is exemplified through the presence of multitasking
primitives and the ability of Ada tasks to communicate with each other via shared variables or
the rendezvous. Real-time support is established through its support for Interrupts and its ability
to manipulate time via the calendar package. All of the above facilities are provided through
the Ada runtime system.

18

However, the majority of runtime systems used by the compilers employ a non-
deterministic non real-time approach to multitasking. To ensure proper implementation of the
DIINS system, it is essential that the runtime system provide the necessary target performance
and real-time functionality. The Ada runtime system lacks some facilities thereby limiting the
scope of its applications.

In this section we will explore some of the limitations of the Ada runtime system and
describe how some of these limitations can be overcome through the use of an appropriate
runtime executive.

Interrupt Handling Interrupts, by definition, are asynchronous and cannot wait to be serviced.
Within Ada the mechanism used to handle interrupts is the rendezvous, which is synchronous
and does wait. The queuing mechanism used in the Ada tasking model is inappropriate for
certain kinds of interrupts which could be lost. Another problem associated with the handling
of interrupts is most conventional Ada runtime systems have a high interrupt latency (time of
arrival of signal to execution of first instruction in the Interrupt Service Routine). Interrupts are
also disabled upon entry to the runtime system. It is important that this time be minimized.

Determinism One of the requirements of most real-time applications is the ability to perform
the appropriate action within severe time constraints. In short, "deterministic behaviour" is
essential for real-time systems.

Call to Ada tasks are handled in a non-deterministic manner, so one cannot be assured that
the action required of a task could be completed within the desired constraints. Furthermore,
most Ada runtime systems provide degraded performance as the number of tasks in the system
increases. The delay statement is another reason for concern. The Language Reference Manual
states the time allotted in a delay statement is the minimum time of the delay rather than
the actual time. These limitations pose severe problems in the implementation of real-time
applications. In DIINS time-sensitive actions may not be completed on time, due to the
unpredictable characteristics of the Ada runtime system.

Rendezvous and Multitasking Primitives In the design of real-time systems, considerable
overlap is required in computation and sensor activity. To achieve the necessary overlap,
multitasking primitives such as semaphores, message queues and event handling mechanisms
are required. These primitives can be built using Ada tasks and the rendezvous mechanism.
However they perform poorly because of excess overhead.

Scheduling In the realization of real-time systems some consideration must be given as to how
and when a task is rescheduled. It is always desirable to run the highest priority task that is ready,
at any point in a program. Within an Ada program, however, rescheduling is only permitted
at certain "synchronization" statements which are few. In addition Ada tasks are scheduled in
a FIFO manner and not on the basis of priority. There is no mechanism to preempt a task or
resume a task, which is often required in a real-time application.

19

Support for time-slicing is essential for tasks of equal priority because of the cyclic nature
of the DIINS system. The Ada runtime system supports preemptive scheduling in favour of
task time-slicing.

Asynchronous Task Communication Ada does not provide primitives for asynchronous task
communication. All inter-task communication is provided through the rendezvous (and shared
variables). The rendezvous is synchronous which makes it difficult and inefficient to implement
entry calls without wait.

6.2.2 Ada Real-Time Executive (ARTX)
The ARTX is a real-time executive (or operating system) which helps overcome the

limitations of the Ada runtime system by enabling the Ada application to make calls to the
ARTX operating system. These actions are often performed much faster than by using the
facilities of the Ada real-time system. While this subtracts from some of the advantages of Ada
such as portability, it enhances the real-time support provided to Ada in terms of functionality
and performance.

Time-slicing The ARTX allows a task to be given a quantum of time to execute. This time
may be adjusted dynamically on a per task basis. No task is permitted to execute longer than
its time-slice. This ensures proper implementation of the DIINS system to ensure that prefilter
and data collection tasks get their fair and appropriate share of processing time.

Interrupt Handling The ARTX facilitates the handling of interrupts using interrupt procedures
(called by the operating system) rather than tasks. This ensures that interrupt signals are not
lost. The interrupt latency time is in the order of 12 microseconds, which is quite acceptable
for most real-time applications.

Determinism The Ada Real-Time Executive (ARTX) provides a deterministic approach to
multitasking. Ceiling for delays, latency times, context switching and rendezvous times are
available for scrutiny. Hence the designer of an application is not at the mercy of the Ada
runtime. Some of the published values are listed in the table below.

Delay Preemption Yes

Preemption for Interrupts Yes

Fixed Overhead Yes

Interrupts Disabled < 12pseconds

Context Switch 40 pseconds

20

Runtime Latency 60 .*conds

Rendezvous Times 120 pseconds

(All numerical values for a Motorola 68020, 20MHz, 1 wait-state.)

Rendezvous and Multitasking Primitives Ada allows multitasking primitives to be built using
rendezvous and Ada tasks. This results in a large overhead. The ARTX system allows the
definition of mailboxes, semaphores, queues and event flags with significantly less overhead
than that imposed by the Ada runtime system.

Scheduling ARTX allows explicit control of the scheduler by providing a package, called
Scheduler, which facilitates the enabling and disabling of task scheduling. This would allow
a section of code to be executed to completion. The only place where code is guaranteed to
execute to completion in Ada is during the rendezvous. The ARTX also provides facilities to
suspend and resume a task which are missing in Ada.

Asynchronous Task Communication The ARTX offers asynchronous communication in
addition to the synchronous communication offered by Ada, which allows entry calls without
wait. This is particularly useful in the DIINS system where the data collection tasks would
therefore not need to synchronize with prefilter tasks to exchange data (thus avoiding the potential
loss of some sensor data).

6.3 Bus Architectures
A significant factor in the choice of board level components of a target system is the

choice of the system bus over which commands and data are transmitted. This choice is more
significant for a real-time application, such as the DIINS system, where fast data transfer and
signalling is crucial to its reliability. The impact of bus selection figures strongly not only in
system performance, but also in the engineering time of configuring and enhancing the system
in the future.

Several popular buses are available for comparison. They include:

1. Multibus II (Intel)
2. VME (Motorola, Mostek, Phillips)
3. Q-bus (Dec)
4. STD (IEEE P961)
5. S-100 (IEEE 696)
6. Versabus (Motorola)
7. Nubus (Texas Instruments)
8. GPIB (IEEE 488)

21

The Q-bus was dropped from further consideration since the choice of the host was not
Dec-based. The STD and S-100 buses which are first generation buses were also dropped
because they connect older processors and are unreliable (susceptible to corrosion and shorting).
The Versabus and Nubus were eliminated from the list because they are not widely used so
components are not readily available. The GPIB (general purpose instrumentation bus) is old
technology and cannot connect memory to CPU because it is not a direct access bus (needs an
interface at each end with clumsy software protocol).

This left the Multibus II and VME system as the only candidates. In this section we shall
compare these two buses based on technical and business factors.

6.3.1 Synchronous Versus Asynchronous
The VME system is an asynchronous bus structure and Multibus II is synchronous. The

advantages and drawbacks of each design must be examined and evaluated to determine which
is the better solution for the DIINS system.

The goal of the VME system is to maximize the performance of a multiprocessor system.
An asynchronous bus does not have a defined speed of operation. Thus by choosing an
asynchronous bus structure, the transfer rate of the bus can adjust to the transfer rate of the
devices using the bus. If the target system for the DIINS system consisted of several processors,
the asynchronous nature of the VME system could allow data to be transferred by each processor
at its fastest possible rate.

In contrast the Multibus II defines its bus, the IPSB, to operate at any frequency to a
maximum of 10MHz.

6.3.2 Data/Address Bus
The VME and IPSB (of Multibus II) each have 32 data transfer lines. Thus when a master

takes control of the bus, the size of the data can be specified on a cycle-by-cycle basis. This
allows 8, 16 or 32 bit processors on the system talking to 8, 16 or 32 bit memory or I/O.
However, the IPSB has the additional capability of transferring 24 bit data due to the capabilities
of the iAPX 386 processor.

The VME system gives the option of choosing 16, 24 or 32 bits of address interface while
with the IPSB only 16 or 32 bits of address may be sent down the line. The address and data lines
are multiplexed onto the same pins in the Multibus II, while on the VME different pins are used.

6.3.3 Arbitration Scheme
The bus arbitration scheme is an important characteristic of a multiprocessing system. It

determines which of the different masters in a system gains control of the bus at any one point
in time.

The VME bus has one global Arbiter which is responsible for control of the bus. It does
so through its own on-board requester. The IPSB uses a distributed arbitration scheme. Each
board in the IPSB system attempts to place its arbitration ID number on the bus. If the number

22

on the bus matches the arbitration ID number, that master becomes the bus owner. The IPSB
has only one bus request line shared by all the masters in the system, and thus is rigidly defined
to work one way. The VME system on the other hand, has four prioritized bus request lines
with more than one master sharing a line. The VME system offers a wider variety of options
by allowing three different choices for arbitration and two different choices for requesters. Thus
the VME system would allow wider flexibility in configuring the system to the need of the
DIINS application.

6.3.4 Interrupt Handling
This, perhaps, is the area where the VME and Multibus II differ the most. The VME system

specifies dedicated hardware for handling and generating interrupts, relieving other masters of
this task. On the other hand, the Multibus 1I system handles interrupts without dedicated devices.
Their solution is accomplished by passing a message from one master to another, which requires
interrupting devices to first acquire control of the bus and then send the information to the
interruptee. The VME proposal handles interrupts faster than the Multibus II by using the
hardware solution.

6.3.5 Processor Independence
The VME and Multibus II can be used with a variety of processors from Motorola and

Intel respectively. However, Intel currently supports the VME bus while Motorola processors
are not currently used with Multibus II. This gives the VME bus greater processor independence.
Should technological advancement offer faster and suitable processors, DREO's investment in
the VME bus would not be lost.

6.3.6 Multiple Vendors
Since no one vendor can serve the entire needs of a marketplace, it is important that board

components for a given bus be available from a variety of vendors. Both VME and Multibus
II have a wide variety of products available for their buses from Dy-4, Plessey, Motorola etc.
This ensures that there is a ready availability of suitable bus products and ensures competitive
pricing. The VME system has a larger market share and thus a slight edge in this category.

23

7 RESULTS

As a result of this requirements study and in line with the recommendations summarized
in section 1.3 above, the following items were purchased to support the design and simulation
analysis of DIINS:

1. two Sun 3/60 workstations with 4 MByte RAM each (one 19" monochrome and one 16"
colour monitor),

2. 4 MByte RAM upgrade for one workstation (the server),
3. one 327 MByte hard disk drive,
4. one 670 MByte hard disk drive,
5. one 1/4 inch cassette tape drive (60 MByte),
6. one NEC LC890 laserprinter,
7. the SUN OS 3.5 operating system,
8. Ready Systems RTAda Comprehensive Development System software,
9. Precision Visuals PV Wave plotting and data analysis software and
10. ArborText Inc. "The Publisher" documentation software.

This SUN network was also connected by ethernet to the Electronics Division VAX
3600, which contains all of the MINS development environment software (as well as the
development environment software for other integrated navigation systems such as PLANS
etc.). A considerable amount of this previously developed software could be used for DIINS
development.

Shortly thereafter, when additional funds were available, this network was enlarged by
the purchase of:

1. expanded RAM to bring the two 3/60 stations to 16 MBytes,
2. one Sun 3/80 workstation, with 16 MByte RAM and a 19" mono monitor,
3. with a 3.5" floppy drive and
4. software for a DOS window.

This Sun 3/80 then became the file server for the other two workstations. A PC was also
added to the network (33 MHz 80386), but it was not primarily for DIUNS work.

24

REFERENCES
[11 J.C. McMillan, "Multisensor Integration Techniques in the DREO Marine Integrated

Navigation System (MINS)", DREO Report 986, August 1988.

25

UNCLASSIFIED -27-
SECURITY CLASSIFICATION OF FORM

(highest classification of Title. Abstract. Keywords)

DOCUMENT CONTROL DATA
ISecurlIty Cassification O titie, body 04 aostract end indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (the name and address of the organtzrion preparing the oocurent. 2. SECURITY CLASSIFICATION
Organizations for whom the document was Prepared. e.g. Establishment sponsoring (overall security classification of the document
a contractor's report, or tasking agency, are entered in section B.) including special warning terms if applicable)

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
OTTAWA, ONTARIO UNCLASSIFIED

KIA 0Z4

3. TITLE Ithe complete document title as indicated on the title page. Its classification should be ind,cated by the appropriate

abbreviaion (S.C or U) in parentheses after the titfe.)

DEVELOPMENT ENVT r'TMENT FOR DIINS (DUAL INERTIAL INTEGRATED NAVIGATION SYSTEM) (U)

4. AUTHORS (Lost name, first name, middle initial)

MCMILLAN, J. CHRIS and RAMOTAUR, Rudy

5. DATE OF PUBLICATION (month and year of piolication of 6a. NO. OF PAGES (total 6b. NO. OF REFS (totai cited in
document) containing information. Include document)

MAY 1991 Annexes. Appendices. etc.) 132
7. DESCRIPTIVE NOTES (the category of the document. eg. technical report, technical note or memorandum. If appropriate, enter the type of

report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

DREO TECHNICAL NOTE

e SPONSORING ACTIVITY (the name of the department project. office or laboratory sponsoring the research and development Include the
address.)

DEFENCE RESEARCH ESTABLISHMENT OTTAWA
OTTAWA, ONTARIO KIA OZ4

9a. PROJECT OR GRANT NO. (if appropriate, the applicable research 9b. CONTRACT NO. (if appropriae, the applicable number under
and development project or grant number under which the document which the document was written)
was written. Please specify whether project or grant)

PROJECT 041LJ

1 0a ORIGINATOR'S DOCUMENT NUMBER (the official document lob. OTHER DOCUMENT NOS. (Any other numbers which may
number by which the document is identified by the originating be assigned this document either by the originator or by the
activity This number must be unique to this document) sponsor)

DREO TECHNICAL NOTE 91-5

1 1. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security classification)

I X) Uniimited distribution
I Distribution limited to defence departments and defence contractors; further distribution only as approved
I Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved

l Distribution limited to government departments and agencies; further distribution only as approved
t I Distribution limited to defence departments; further distrioution only as approved
I I Other (please specify):

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document This will normally correspond to
the Document Availabilty (11). However, where further distribution (beyond the audience specified in 11) is possible, a wider
announcement audience may be selected.)

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

OCDO3 2/06/87

-28- UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

13. ABSTRACT (a brief and factual summary of the document It may also appear elsewhere in the body of the document itself. it is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S). (C. or (U).
It is not necessary to include here abstracts in both offical languages unless the text is bilingual).

With a view to satisfying the navigational requirements of TRUMP, CPF and future
submarines, DREO initiated an investigation into the possible extension of MINS (Marine
Integrated Navigation System) to accommodate the two inertial navigation systems which
each of these platforms were expected to have, in addition to the various navigation
sensors that MINS already integrates (GPS, Transit, Loran-C, Omega, Speedlog and
Gyrocompass). It soon became clear that the ideal solution would be a new system with
a different architecture than MINS. The new concept was called DIINS (Dual Inertial
Integrated Navigation System). A study was therefore initiated to determine the most
appropriate hardware and software to be used in the design and development of DIINS. This
report contains a brief description of the recommended hardware and software solution,
as well as the rationale for their selection.

1 4. KEYWORDS. DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document They should be selected so that no security classification is required. Identifiers. such as equipment
model designation, trade name, military project code name. geographic location may also be included. Itf possible keyworos shoud be selected
from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it is not possible to
select indexing terms which are Unclassified. the classification of each should be indicated as with the title.) A

NAVIGATION

MINS

DEVELOPMENT ENVIRONMENT

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

